- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Zhu, Linxiao (3)
-
Zhang, Zhenong (2)
-
Boltasseva, Alexandra (1)
-
Gavini, Vikram (1)
-
Ghosh, Pramit (1)
-
Higgins, Simon J. (1)
-
Kalantari_Dehaghi, Alireza (1)
-
Kudyshev, Zhaxylyk (1)
-
Meyhofer, Edgar (1)
-
Reddy, Harsha (1)
-
Reddy, Pramod (1)
-
Shalaev, Vladimir M. (1)
-
Vezzoli, Andrea (1)
-
Wang, Kun (1)
-
Yan, Shen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Zhenong; Zhu, Linxiao (, Physical Review Applied)The reciprocity between thermal emission and absorption in materials that satisfy the Lorentz reciprocity places a fundamental constraint on photonic energy conversion and thermal management. For approaching the ultimate thermodynamic limits in various photonic energy conversions and achieving nonreciprocal radiative thermal management, broadband nonreciprocal thermal emission is desired. However, existing designs of nonreciprocal emitters are narrowband. Here, we introduce a gradient epsilon-near-zero magneto-optical metamaterial for achieving broadband nonreciprocal thermal emission. We start by analyzing the nonreciprocal thermal emission and absorption in a thin layer of epsilon-near-zero magneto-optical material atop a substrate. We use temporal coupled-mode theory to elucidate the mechanism of nonreciprocal emission in the thin-film emitter. We then introduce a general approach for achieving broadband nonreciprocal emission by using a gradient epsilon-near-zero magnetooptical metamaterial. We numerically demonstrate broadband nonreciprocal emission in gradient-doped semiconductor multilayer, as well as in a magnetic Weyl semimetal multilayer with gradient chemical potential. Our approach for achieving broadband nonreciprocal emitters is useful for developing broadband nonreciprocal devices for energy conversion and thermal management.more » « less
-
Reddy, Harsha; Wang, Kun; Kudyshev, Zhaxylyk; Zhu, Linxiao; Yan, Shen; Vezzoli, Andrea; Higgins, Simon J.; Gavini, Vikram; Boltasseva, Alexandra; Reddy, Pramod; et al (, Science)null (Ed.)Hot-carriers in plasmonic nanostructures, generated via plasmon decay, play key roles in applications like photocatalysis and in photodetectors that circumvent band-gap limitations. However, direct experimental quantification of steady-state energy distributions of hot-carriers in nanostructures has so far been lacking. We present transport measurements from single-molecule junctions, created by trapping suitably chosen single molecules between an ultra-thin gold film supporting surface plasmon polaritons and a scanning probe tip, that can provide quantification of plasmonic hot-carrier distributions. Our results show that Landau damping is the dominant physical mechanism of hot-carrier generation in nanoscale systems with strong confinement. The technique developed in this work will enable quantification of plasmonic hot-carrier distributions in nanophotonic and plasmonic devices.more » « less
An official website of the United States government
